Tuesday, 13 December 2011

Reverse Engineering



What is Reverse Engineering?
The process of duplicating an existing component, subassembly, or product, without the aid of drawings, documentation, or computer model is known as reverse engineering.

Reverse engineering can be viewed as the process of analyzing a system to:
1.Identify the system's components and their interrelationships
2.Create representations of the system in another form or a higher level of abstraction
3.Create the physical representation of that system.

Reverse engineering is the process of discovering the technological principles of a device, object, or system through analysis of its structure, function, and operation. It often involves taking something (e.g., a mechanical device, electronic component, software program, or biological, chemical, or organic matter) apart and analyzing its workings in detail to be used in maintenance, or to try to make a new device or program that does the same thing without using or simply duplicating (without understanding) the original.
Reverse engineering has its origins in the analysis of hardware for commercial or military advantage The purpose is to deduce design decisions from end products with little or no additional knowledge about the procedures involved in the original production. The same techniques are subsequently being researched for application to legacy software systems, not for industrial or defence ends, but rather to replace incorrect, incomplete, or otherwise unavailable documentation


Friday, 9 December 2011

Computer Science Engineering




Computer science or CS is the study of the theoretical foundations of information and computation. It also includes practical techniques for their implementation and application in computer systems. Computer scientists invent algorithmic processes that create, describe, and transform information and formulate suitable abstractions to design and model complex systems.

Computer science has many sub-fields; some, such as computational complexity theory, study the fundamental properties of computational problems, while others, such as computer graphics, emphasize the computation of specific results. Still others focus on the challenges in implementing computations. For example, programming language theory studies approaches to describe computations, while computer programming applies specific programming languages to solve specific computational problems, and human-computer interaction focuses on the challenges in making computers and computations useful, usable, and universally accessible to humans.
The general public sometimes confuses computer scientists with other computer professionals having careers in information technology, or think that computer science relates to their own experience with computers, which typically involves activities such as gaming, web-browsing, and word-processing. However, the focus of computer science is more on understanding the properties of the programs used to implement software such as games and web-browsers, and using that understanding to create new programs or improve existing ones